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Abstract

Aim: To compare Australian dryland soils with dryland soils globally.

Location: Australian and global drylands.

Methods: We used data from standardized surveys of soil properties (C, N, and P

content and stoichiometry, and pH) and microbes (diversity, composition, and corre-

lation networks) from Australian and global drylands, which occupy three‐quarters
of the Australian land mass and are the largest biome on Earth.

Results: We found that Australian dryland soils were different, exhibiting character-

istics of ancient weathered soils. They had lower pH, total and available P, and total

N, and greater C:N and C:P ratios than global dryland soils. Australian soils had dis-

tinctive microbial community composition and diversity, with more Proteobacteria

and fewer Basidiomycota than global dryland soils, and promoted the abundance of

specific microbial phylotypes including pathogens, mycorrhizae, and saprobes.

Main conclusions: Australian dryland soils are clearly different from dryland soils

elsewhere. These differences need to be considered when managing dryland soils to

avoid unreasonable expectations about plant productivity and carbon stocks, or

when predicting likely changes in ecosystem processes resulting from global envi-

ronmental change.
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1 | INTRODUCTION

Comparisons of the biogeography of the Australian continent with

the rest of the world have fascinated scientists for decades (Orians &

Milewski, 2007). The literature is replete with statements referring to

Australia as uniquely different in the world, being the largest island

continent, and characterized by flat, barren, and heavily eroded land-

scapes that are largely unproductive for agriculture (Andrewarthy &

Birch, 1984; Orians & Milewski, 2007). Australia also supports a

diverse range of unusual plants and animals such as egg‐laying “mar-

supials”, and has had a long history of aboriginal occupation, but a rel-

atively short history of European settlement coupled with European

farming practices (Gammage, 2011). Unlike other continents, more

than 90% of Australia's land mass still supports native vegetation, and

less than 6% is arable. Australian soils are commonly described as

being nutrient‐poor or infertile, and unsuitable for farming (Lindsay,

1985; Northcote & Skene, 1972; Stafford Smith & Morton, 1990;

Taylor, 1994). Strikingly, despite this widely held view, and unlike

what we know about the uniqueness of Australia's plants and animals,

there is a general lack of empirical evidence to support statements

about the low fertility of Australia's soils (Lindsay, 1985), particularly

when compared to other regions of the globe.

Drylands, ecosystems characterized by a scarcity of water, are

particularly relevant when comparing Australian soils from those of
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the rest of world. These ecosystems occupy almost 75% of Aus-

tralia's land mass (Dunkerley, 2010) and are globally highly impor-

tant, occupying about 45% of Earth's global land area and

supporting about 40% of its human population (Prăvălie, 2016). At

a continental scale, Australian drylands exhibit three unique charac-

teristics compared with other drylands. First, the Australian conti-

nent is situated in the mid to lower latitudes. Therefore, unlike

many other terrestrial ecosystems from the Northern Hemisphere,

its soils were not strongly influenced by the last glaciation, which

occurred about ~21 kyr BP. Because of the lack of glacial distur-

bance on Australian soils, they are considered, on average, to be

extremely ancient (i.e., many millions of years). For example, many

of Australia's soils had their origins in the late Cainozoic period

(10–20 Myr BP), where they experienced long periods of relative

stability (Hubble, Isbell, & Northcote, 1983). Consequently, soils

from Australia are likely to have characteristics consistent with

strongly weathered soils with a long history of development,

including low soil phosphorus (P), low pH, or low concentrations of

soil carbon (C), which all contribute to the uniqueness of its soils

(Laliberté et al., 2013; Vitousek, Porder, Houlton, & Chadwick,

2010; Wardle, Walker, & Bardgett, 2014). Second, unlike other dry-

land ecosystems worldwide, forests and dense woodlands domi-

nated by Eucalyptus spp. typically occur in environments that

elsewhere, would normally be occupied by drought‐tolerant shrubs

or grasses (Dunkerley, 2010; but see Bastin et al., 2017). These

densely wooded or forested systems are often characterized by a

higher amount of organic matter and lower levels of soil P and pH

due to weathering related to plant productivity, contributing to the

unique signature of Australian soils.

Australia has only recently been occupied by Europeans, and tra-

ditional cultures did not cultivate the land (Hubble et al., 1983).

Therefore, there are almost no anthropogenic soils, i.e., completely

human‐produced soils resulting from direct human impact. The lack

of soil rejuvenation from human disturbance may also contribute to

the maintenance of soils showing characteristics of strongly weath-

ered profiles. All of these characteristics distinguish Australia from

other continents where drylands form a large proportion of the land

mass, such as Africa and North America. It is known that Australian

soils are low in P, and soil pH levels could change in response to

small changes in the water balance (Slessarev et al., 2016). Further,

given the global relationship between pH and soil microbial commu-

nities (Fierer & Jackson, 2016; Lauber, Hamady, Knight, & Fierer,

2009; Maestre et al., 2015), we might expect Australian soils to be

characterized by a different microbial community. However, there

have been no continental‐wide assessments evaluating whether Aus-

tralian soils and their microbial communities might differ or resemble

from those from other drylands.

Here, we compared soil properties (total C and pH), soil nutrient

availability, and microbial communities of Australian soils with those

across the globe. We pose the following question: To what extent

do Australian dryland soils exhibit characteristics similar to other dry-

lands globally? To address this question, we gathered information

from five independent datasets that contained a total of 612 dryland

locations and information on nutrient availability, soil C, pH, and/or

microbial communities globally and in Australia. We report on these

soil properties because they have been used for over half a century

as classic indicators of soil weathering (McGill & Cole, 1981; Walker

& Syers, 1976). Similarly, soil microbial communities have recently

been suggested to change strongly in response to ecosystem devel-

opment (Alfaro, Manzano, Marquet, & Gaxiola, 2017; Noll & Wellin-

ger, 2008), giving us further insights into the uniqueness of

Australian soils. Given the nature of the Australian landscape

described above, we hypothesized that, compared with global dry-

lands elsewhere, Australian soils should be characterized by ancient,

deeply weathered soils, i.e., that are acidic and nutrient‐depleted.
These characteristics might have also led to a very specific microbial

community assembly in the continent.

Identifying whether Australian soils are really unique and

whether their microbial communities are distinct or merely a subset

of those found in drylands globally is important for several reasons.

First, it would fill an important gap in our knowledge that could also

advance our understanding of observed biogeographical patterns of

other organisms (e.g., plants). Second, we would be able to manage

these soils more effectively if we have a better understanding of

their inherent fertility compared with similar ecosystems worldwide

that have formed under the influence of different geological and his-

torical influences. Farming practices in Australia are still largely based

on ideas imported from Europe where soils, landscapes and the

response to land management practices are markedly different.

Indeed, Australian ecosystems are often managed on the basis that

they are assumed to be similar to other global drylands (Pickard,

1994). Understanding what makes Australian soils unique is also

important to anticipate how ongoing environmental changes can

affect their capacity to maintain multiple essential ecosystem func-

tions and services (e.g., nutrient cycling, carbon storage, and food

and fibre production).

2 | MATERIALS AND METHODS

2.1 | Study sites

We gathered information from five independent, large‐scale datasets

containing information on nutrient availability, soil C, pH, and/or

microbial communities, which were all measured using the same pro-

tocols. These datasets included: (a) 236 sites from the BIOCOM pro-

ject (Maestre et al., 2012), which included 18 Australian sites (Global

Network Study, hereafter); (b) 22 sites from a regional study across

eastern Australia (Delgado‐Baquerizo et al., 2015; East Australia

Study, hereafter); (c) 54 sites from a regional study of grazing

impacts on eastern Australian soils (Eldridge, Delgado‐Baquerizo, Tra-
vers, Val, & Oliver, 2016; NSW Grazing Study, hereafter); (d) 109

samples from uncultivated dryland sites from the Australian BASE

project (Bissett et al., 2016; BASE Project, hereafter, and available

online from Delgado‐Baquerizo et al., 2016); and (e) 191 soils col-

lected as part of a regional study of biocrusts across eastern Aus-

tralia (Eldridge, 1996; Biocrust Study, hereafter; see Table S1.1,
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Appendix S1 in Supporting Information). Drylands are by definition

located in areas with aridity index <0.65, but we also included in our

analyses dry subhumid areas because these areas also severely water

limited, and are likely to become increasingly arid under current cli-

mate change prediction scenarios (Huang, Yu, Guan, Wang, & Guo,

2016). Our study included data from soil samples collected from 612

dryland (aridity index 0.06–0.92; UNEP 1992) sites located in 19

countries (Argentina, Australia, Botswana, Brazil, Burkina Faso, Chile,

China, Ecuador, Ghana, Iran, Israel, Kenya, Mexico, Morocco, Peru,

Spain, Tunisia, USA and Venezuela) from six continents (Figure 1;

Table S1.2. Appendix S1). Moreover, this dataset included locations

in temperate, arid, continental, polar, and tropical climates, as

defined by the Köppen climate classification (Peel, Finlayson, &

McMahon, 2007). All soil samples were collected within the top

10 cm following standardized protocols. Data availability and refer-

ences to the original protocols for each dataset are available in Sup-

porting Information Table S2. For example, in the particular case of

soil microbial communities, we gathered information for 101 plots

including the 79 sites in Maestre et al. (2015) and the 22 sites in

Delgado‐Baquerizo et al. (2017).

2.2 | Soil properties

For all 612 soil samples, we gathered information on organic C and

pH. In all cases, soil organic C concentration was determined as

described Anderson and Ingram (1993) and soil pH in a 1:5 soil‐water

extract with a pH meter. We also gathered information for 300 of

these samples on total N and P. Soil total N was measured with a CN

analyser (LECO CHN628 Series, Leco Corporation, St Joseph, MI,

USA). Total P was determined using a SKALAR San++ Analyzer (Ska-

lar, Breda, The Netherlands) after digestion with sulphuric acid (3 hr at

415°C) as described in Anderson and Ingram (1993). For 246 soils, we

assessed available P. Olsen inorganic P (Olsen, Cole, Watanabe, &

Dean, 1954) was measured following a 0.5 M NaHCO3 (pH 8.5) extrac-

tion following the soil‐P fractionation protocol (Tiessen & Moir, 1993).

These were measured colorimetrically (Sims, Ellsworth, & Mulvaney,

1995) using a 0.5 M soil extracts and K2SO4 with a 1:5 soil: extract

ratio (Delgado‐Baquerizo et al., 2013).

2.3 | Molecular and bioinformatics analyses

For 101 plots, we gathered information on the community composi-

tion, richness, and abundance of soil fungi and bacteria

(Appendix S2). These data were generated using next generation

molecular analyses (Maestre et al., 2015). In brief, DNA was

extracted from 0.5 g of defrosted soil samples using the Powersoil®

Isolation Kit (Mo Bio Laboratories, Carlsbad, CA, USA).

Detailed explanation on bioinformatics and molecular analyses

are given in Maestre et al. (2015). The community composition and

richness of fungi and bacteria were analysed in the Next Genera-

tion Genome Sequencing Facility of the Western Sydney University

(Australia) using the Illumina MiSeq platform and the 341F/805R

(bacteria) and FITS7/ITS4 (fungi) primer sets (Herlemann et al.,

2011; Ihrmark et al., 2012). Initial sequence processing and diver-

sity analyses for both bacterial 16S rDNA and fungal ITS genes

were conducted by using the ‘QIIME’ package (Caporaso et al.,

2010). Initially, low‐quality regions (Q < 20) were trimmed from the

5′ end of sequences, and paired ends were joined with FLASH

(Magoč & Salzberg, 2011) for 16S rDNA sequences and Fastq‐join
(Aronesty, 2011) for ITS reads. Sequences were demultiplexed, and

a further round of quality control was conducted to remove

sequences containing ambiguous bases (N) and reads containing

bases with a quality score <25. Chimeric 16S rDNA sequences

were detected by using the UCHIME algorithm from the

F IGURE 1 The global distribution of the 612 study sites used in this study. The map of Australia is enlarged to provide a better
representation of the distribution of sites surveyed there [Colour figure can be viewed at wileyonlinelibrary.com]
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‘USEARCH’ package (Edgar, 2010) implemented within VSEARCH

(https://github.com/torognes/vsearch). The RDP training dataset

(version 9; Cole et al., 2005) was used as a reference for chimera

detection, as recommended by the UCHIIME documentation. De

novo (abundance‐based) chimera detection was used for ITS data

using ‘USEARCH’ (Edgar, 2010). The remaining high‐quality chi-

mera‐free sequences were used for downstream analysis. Opera-

tional taxonomic units (OTUs) were defined as clusters of 97%

sequence similarity using UCLUST (Edgar, 2010). Taxonomy was

assigned using UCLUST (Edgar, 2010) against the Greengenes data-

base (version 13_850) for 16S rDNA OTUs (DeSantis et al., 2006;

McDonald et al., 2012). For fungal ITS sequences, taxonomy was

assigned by using BLAST (Altschul, Gish, Miller, Myers, & Lipman,

1990) against the UNITE database (version 6.9.7; Kõljalg et al.,

2013) (E < 10−5). This database, however, considers the Zygomy-

cota as a phylum, whereas the most recent taxonomical references

no longer do so (McLaughlin & Spatafora, 2014). We thus refer to

Zygomycetous fungi when referring to the different taxonomical

units formerly included in the Zygomycota (McLaughlin & Spata-

fora, 2014). The resultant OTU abundance tables for both primer

sets were filtered to remove singletons and rarefied to an even

number of sequences per samples to ensure an equal sampling

depth (11,925 and 17,000 for 16S rDNA and ITS respectively).

Shannon diversity was calculated on these rarefied OTU tables by

using ‘QIIME’ (Caporaso et al., 2010). We estimated diversity using

this metric because it has been recommend when quantifying and

comparing microbial diversity (Haegeman et al., 2013). The number

of bacterial sequences obtained from two of the sites surveyed

was too low to estimate microbial diversity accurately, so they

were not used in further analyses. Quantitative PCR (qPCR) reac-

tions were carried out in triplicate on an ABI 7300 real‐time PCR

(Applied Biosystems, Foster City, CA, USA). The total abundance of

bacterial 16S‐rRNA genes and fungal internal transcribed spacer

(ITS) were amplified with the Eub 338‐Eub 518 and ITS 1‐5.8S pri-

mer sets (Evans & Wallenstein, 2012).

2.4 | Statistical analyses

Differences in soil chemical properties and relative abundance of

microbes between Australia and elsewhere were explored using a sim-

ple mixed model, based on a one‐way ANOVA with subsamples. The

contrast of interest, namely samples representing the Australian conti-

nent versus samples from countries in the rest of the world, was com-

pared with an experimental error term formed from the stratum

variance among 31 survey “units”. The survey units were the different

countries, but the number of survey units (n = 31) was larger than the

number of countries surveyed (n = 19) simply because multiple inde-

pendent surveys were conducted in some countries. Therefore, in the

case of samples from Argentina, there were three independent survey

units, each carried out by a specific sampling team and research group.

A survey “unit” was considered to be independent if it were under-

taken by a particular survey team within a specific area. Analyses were

conducted using GENSTAT (VSN International, 2015).

We supported these analyses with structural equation modelling

(SEM; Grace, 2006) of the direct effects of two important climatic vari-

ables, mean annual temperature (MAT) and aridity on the five soil

response variables (pH, C, total and available P, total N) and the three

N, P, and C ratios (C:N, C:P, NP). We also included in the model geo-

graphical location (distance from the Equator), Australia (compared

with elsewhere), and community type (grasslands vs. woodlands). Our

SEM is based on the plausibility of an a priori model explaining the

relationships among a group of variables of interest (Appendix S3). The

a priori model examined the direct and indirect effects of climate, dis-

tance from the Equator, community type, and Australia versus else-

where on our soil variables. We were particularly interested in

whether the path coefficient between Australia and the variable of

interest increased, reduced, or had no effect on the variable of interest

while excluding the effects of distance from the Equator, community

type, temperature, or aridity. Data on aridity, which expresses precipi-

tation in relation to potential evapotranspiration, were calculated as 1‐
FAO aridity index using FAO's global aridity map (http://ref.data.fao.

org/). Mean annual temperature data were obtained from the World-

Clim database (Fick & Hijmans, 2017).

The a priori model was compared with the variance‐covariance
matrix of our data to enable an overall goodness‐of‐fit to be

assessed, using the χ2 statistic. The goodness‐of‐fit test estimates

the likelihood of the observed data given the a priori model struc-

ture. Thus, high probability values indicate that these models are

highly plausible causal structures underlying the observed correla-

tions. Analyses were performed using the AMOS 22 (IBM, Chicago, IL,

USA) software. For each of our models, those with low χ2, high

goodness‐of‐fit index (GFI) and high normal fit index (NFI) were

interpreted as showing the best fit to our data (Appendix S3).

Finally, we tested for differences in bacterial and fungal commu-

nity composition between Australia and elsewhere using one‐way

permutational multivariate analysis of variance (PERMANOVA;

Anderson, 2001) on relatively abundant (>70%) taxa. Non‐metric

multidimensional scaling ordination (nMDS) and the Bray–Curtis dis-

similarity metric were used to explore overall differences in microbial

composition (at the OTU level) between Australia and elsewhere.

PERMANOVA and nMDS analyses were done using PRIMER‐E Ltd.

& PERMANOVA version 6 (Plymouth Marine Laboratory, UK).

2.5 | Microbial network analyses

These analyses were conducted using the two datasets, including

microbial data for fungi and bacteria (Global Network study and East

Australia study). Bioinformatic analyses were done together for these

two datasets so that OTUs of fungi and bacteria are directly compa-

rable (see Section 2.3). Using these data, we identified ecological

clusters (or “modules”) of strongly associated taxa using correlation

networks (“co‐occurrence networks”) and the following protocol.

First, because of the enormous number of OTUs (synonymous with

species) detected for fungi and bacteria, and to obtain a practicable

network of interactions, we focused on the common species for

these organisms (taxa accounting for 70% of the relative abundance
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of bacterial or fungal communities). These analyses were done inde-

pendently for fungi and bacteria. These bacterial and fungal taxa

were then merged into a single abundance table. This resulted in a

dataset with 4,192 taxa including 3,608 bacterial and 584 fungal

phylotypes. We then calculated all pairwise Spearman's rank correla-

tions (ρ) between all soil plant/animal and soil microbial/animal taxa.

We focused exclusively on positive correlations because they pro-

vide information on microbial taxa that may respond similarly to

environmental conditions (Barberán, Bates, O'Casamayor, & Fierer,

2012). We considered a co‐occurrence to be robust if the Spear-

man's correlation coefficient was >0.25 and p < 0.01 (see a similar

approach Bastian, Heymann, & Jacomy, 2009). The network was

visualized with the interactive platform GEPHI (Bastian et al., 2009).

Finally, we used default parameters from GEPHI to identify modules

of soil taxa strongly interacting with each other.

We then computed the relative abundance of each module by

averaging the standardized relative abundances (z‐score) of the taxa

that belong to each module. By standardizing our data, we ruled out

any effect of merging data from bacteria and fungi. To further

explore differences in microbial phylotypes (analogous to species) in

dryland soils between Australia and elsewhere, we generated an eco-

logical network of soil microbes using information from the microbial

dataset (see above). We identified and calculated the relative abun-

dance of six major ecological clusters (“modules”) of phylotypes

strongly co‐occurring (Appendix S2).

3 | RESULTS

3.1 | Soil chemistry

Australian soils had significantly lower pH values than elsewhere

(F1,29 = 8.52, p = 0.007; Figure 2a). Averaged over all 612 sites, we

found no differences in organic C between Australia and elsewhere

(p = 0.94), but values were 40% lower in Australian soils when we

restricted our analyses to grasslands and shrublands (F1,24 = 5.40,

p = 0.029; Figure 2b). These results were maintained even when

we accounted for differences in distance from the Equator, mean

annual temperature, and aridity using SEM (Figure S4.1). Total

(F1,22 = 4.66, p = 0.043) and available (F1,21 = 8.78, p = 0.007) p

were significantly lower in Australian soils (Figure 3a,b), but there

were no differences in total N (p = 0.45, Figure 3c). Ratios of soil

C:N and C:P were significantly greater in Australian soils

(F1,23 > 12.2, p < 0.002; Figure 3d,e), but the N:P ratio did not dif-

fer (p = 0.95; Figure 3f). As with soil pH and organic C, our results

were maintained after accounting for differences in distance from

the Equator, mean annual temperature, and aridity using SEM (Fig-

ures S4.2 & S4.3).

3.2 | Microbial communities

Australian soils had lower bacterial richness (3,108 cf. 3,923;

F1,14 = 20.3, p < 0.001) but similar fungal richness (626 cf. 549,

p = 0.19) to soils from global drylands (Figure 4). The fungal to bac-

terial ratio was almost three times lower in Australian soils (ratio:

0.05) than elsewhere (ratio: 0.14; F1,11 = 6.06, p = 0.015; Figure 4).

When we partitioned these data between woodland and grassland

sites, bacterial richness and the fungal to bacterial ratio were always

lower in Australia than elsewhere, but there were no community

effects for fungal richness (Figure 4).

Proteobacteria (F1,11 = 7.89, p = 0.013) was relatively more

abundant, and Actinobacteria (F1,11 = 5.84, p = 0.056) relatively less

abundant, in Australian soils (Figure S5.1). For fungi, Australian soils

had a greater relative abundance of Basidiomycota (29.3 cf. 19.5;

F1,11 = 15.58, p < 0.001), but lower relative abundance of Glom-

eromycota (0.37 cf. 3.92; F1,11 = 11.42, p = 0.002) than elsewhere.

When we correlated microbial relative abundance with soil chemical

data, we found that Proteobacteria was strongly correlated with low

pH and low total P (Table S6). Conversely, abundance of Gemmati-

monadetes and Verrucomicrobia was positively associated with soil

pH, total and available P. For fungi, Basidiomycota were relatively

more abundant (F1,100 = 14.07, p < 0.001) and Chytridiomycota less

abundant in Australian soils (Table S6).

Our microbial data clustered into six clear networks (Figure 5a).

The relative abundance of modules 0 and 1 was significantly lower

for Australian soils than elsewhere (Figure 5b), and positively corre-

lated with increasing pH and soil P (Table S6.1). Modules 3 and 4,
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North America
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Organic carbon (%)
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F IGURE 2 Mean (+95% CI) values of
pH (a) and soil organic carbon (b) for sites
in Australia and elsewhere. The upper
panels show the mean values for Australia
and elsewhere and the lower panels the
values for different continents. *Indicates a
significant different in the mean values at
p < 0.05 (one‐way ANOVA). For organic C,
the lower panel separates sites into
grassland and woodland communities.
Woodland communities were sampled only
in Australia and Africa (see Supporting
Information Appendix S1) [Colour figure
can be viewed at wileyonlinelibrary.com]
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however, displayed the opposite trend, being negatively correlated

with pH and soil P and relatively more abundant in Australian soils

(Table S6.1). The relative abundance of different bacterial and fungal

phyla differed among the six modules (Figure 5c). Specific taxa com-

prising each module and including multiple mycorrhiza, saprobe, and

pathogen species and their traits are available in Table S2.1. The

two‐dimensional NMDS analyses indicated clear and significant sepa-

ration between both bacteria and fungi (Figure S7.1).

4 | DISCUSSION

Compared with elsewhere, two of the strongest characteristics of

Australian soils were their lower soil P and pH. Australian soils are

known to be among the oldest soils on Earth, a consequence of

the minor effect of last glaciations on their soils (McKenzie, Jac-

quier, Isbell, & Brown, 2004). Long‐term chronosequence studies

(Vitousek et al., 2002) and studies of ancient tropical systems (Del-

gado‐Baquerizo et al., 2016) demonstrate that older soils have

extremely low levels of P. This phenomenon is also apparent in

drylands, as evidenced by the classic studies of Lajtha (1988) and

Lajtha and Schlesinger (1988) in the Chihuahuan Desert in the

western United States. Phosphorus is largely under abiotic control,

and derived mainly from subsoil and P‐rich parent material (Vitou-

sek et al., 2010). However, P can also be deposited through low‐
distance aeolian deposition (Das, Evan, & Lawrence, 2013). Lower

total and available P is consistent with the large number of studies

of plant–soil relationships in Australia (see reviews by Lambers,

Raven, Shaver, & Smith, 2008; Lambers, Brundrett, Raven, & Hoo-

per, 2010), though P levels are spatially variable (Kooyman, Laffan,

& Westoby, 2016). Similarly, chronosequence studies reveal that

soil pH tends to be higher in young soils and declines with soil age

(Alfaro et al., 2017).

The pattern of pH change in Australia is strongly controlled by

precipitation and leaching (high pH in drylands), bedrock characteris-

tics (e.g., high over calcrete, Kooyman et al., 2016), and vegetation

(low organic matter in drylands; de Caritat, Cooper, & Wilford,

2011). Soil pH, which was also lower in Australian soils, typically

declines with ecosystem development due to prolonged leaching of

cations in the bedrock over millennia. However, the extent to which

pH changes with age depends on soil type and particularly, the nat-

ure of the parent material (Lambers, Shane, Cramer, Pearse, &

Veneklaas, 2006). Although the effect of low P on terrestrial biota is

clear from the Australian literature (Lambers et al., 2006, 2010;

McKenzie et al., 2004), we lack a comprehensive comparison of the

magnitude of the differences between Australia and other
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continents, particularly from drylands (Stafford Smith & Morton,

1990). Interestingly, many plant species from Australian drylands

(e.g., family Proteaceae) have co‐evolved under conditions of low soil

P (Specht & Rundel, 1990) by developing proteoid or clustered root

structures, or by forming close associations with N‐fixing microbes

or mycorrhizal fungi. These root morphologies allow plants to exude

large amounts of P‐mobilizing carboxylates (organic anions), making

them extremely competitive in P‐depleted environments (Lambers et

al., 2006). Similarly, long‐lived structures on plants may allow those

growing on infertile soils to produce C relatively more efficiently

than N, allowing Australian drylands to produce relatively high levels

of biomass, even in the presence of low levels of P (Orians & Mile-

wski, 2007). These vegetation communities, which are extremely

well adapted to low P, occur widely across the Australia drylands,

further supporting the notion that Australian soils have much lower

levels of P than drylands elsewhere.

4.1 | Soil C levels in Australian soils are similar to
soils elsewhere

Given the expectation that Australian soils should reflect characteris-

tics of retrogressive ecosystems, we had expected their soils to have

less C than global drylands elsewhere. We partially fulfilled our

expectation, as soil C was lower in Australia than elsewhere, but

only when forests and woodlands were excluded from our analyses.

Eucalypt woodlands are a widespread vegetation community in Aus-

tralian drylands and may explain the higher C:N ratio we found in

Australian soils, consistent with studies of major forested biomes

worldwide (Xu et al., 2013). Several reasons may support the lack of

an overall difference between soils in Australia and elsewhere. First,

drylands soils are naturally low in C (Plaza, Gascó, Méndez, Zaccone,

& Maestre, 2018). The low capacity of dryland soils to retain C,

which has recently been highlighted by Rabbi et al. (2015) is a char-

acteristic that seems to be shared across drylands worldwide. Sec-

ond, large areas of Australia's drylands support dense forests and
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woodlands, often dominated by Eucalyptus spp., rather than low‐sta-
ture shrubs and grasses. This may reflect the ability of these trees to

access groundwater (Eberbach, 2003), releasing them from a reliance

on precipitation or the redistribution of surface water. Soil C storage

is known to be significantly greater beneath woody communities

than grasslands (Chen, Hutley, & Eamus, 2005), a key condition that

might have helped Australian soils maintain higher than expected

levels of C, given their long history of development. For example,

soil organic carbon stocks in northern Australian savanna woodlands

are known to be almost three times greater than global averages,

and similar to tropical woodlands (Chen et al., 2005). Dense wood-

lands and forests also have a greater capacity to develop on nutri-

ent‐poor soils (Bond, 2010). More interestingly, when we re‐analysed
our data excluding sites with forests, woodlands, and savannas, Aus-

tralian soils had about 40% less C than dryland soils elsewhere. This

is in agreement with the expectation that ecosystems in Australia

might be largely retrogressive, as defined in Peltzer et al., 2010). The

trajectory of soil C change during ecosystem development is nonlin-

ear (quadratic) with time. As ecosystems develop, C production

increases rapidly via microbial processes, but begins to decline in

very old systems as rates of nutrient leaching exceed accumulation

and old soils are no longer capable to retain organic matter, in part,

a consequence of the largely leached soil cations over millennia

(Vitousek et al., 2010). Interestingly, unlike total C and P, total N in

Australia did not differ from elsewhere. Drylands are known to have

a very active N fixer (e.g., cyanobacteria) and nitrifier microbial com-

munities (Delgado‐Baquerizo et al., 2016). Moreover, unlike P, which

is linked to the bedrock availability, the major source of N is the

atmosphere, explaining why Australian drylands have maintain similar

levels of total N and N availability than drylands elsewhere.

4.2 | Australian soils have a unique microbial
signature

Differences in aridity, soil mineralogy, and geomorphology are

known to be strong drivers of surface‐ and subsurface‐resident
microbial communities (Pointing & Belnap, 2012). At the entire com-

munity composition and phylum levels, we found strong and signifi-

cant differences between soils from Australia and elsewhere. For

example, the NMDS plots of bacterial and fungal communities

showed a significant spatial separation across locations from Aus-

tralia compared with elsewhere. Also, important phyla such as Pro-

teobacteria, the dominant bacterial taxon globally (Delgado‐
Baquerizo et al., 2016; Maestre et al., 2015; Ramirez, Craine, &

Fierer, 2012), were relatively more abundant in Australian soils than

elsewhere. A higher amount of Proteobacteria has been reported

previously during long‐term ecosystem development in soils from

the Southern Hemisphere (Jangid, Whitman, Condron, Turner, & Wil-

liams, 2013).

Some of these general patterns might be related to the low P

and pH that characterize soils from Australia compared with else-

where. For example, soil pH values from our soils were also nega-

tively correlated with the relative abundance of Basidiomycota

(Table S6.1), a group of fungi found typically in acidic forested soils,

but positively correlated with Actibobacteria and Gemmatimonade-

tes, and the fungal phyla Glomeromycota and Chytridiomycota

(Table S6.1). Proteobacteria, particularly γ‐Proteobacteria, have been

shown to be important drivers of soil functioning in both field and

microcosm studies from Australian soils (Delgado‐Baquerizo et al.,

2017). Differences in soil P and pH are known to be strong drivers

of microbial communities in terrestrial ecosystems (Lauber et al.,

2009), and there is considerable evidence that these differences are

linked to the assembly of microbial communities in Australia (Lam-

bers et al., 2008).

Our network analyses further indicated that some dominant taxa

(accounting for >70% relative abundance of all taxa) co‐occur in Aus-

tralia, but are not as abundant elsewhere. Our results suggest, there-

fore, that the specific soil properties from Australian soils likely

promote particular ecological clusters of strongly co‐occurring micro-

bial species, clusters that are different elsewhere. For instance, soils

from Australia have very low relative abundance of modules 0 and 1,

which however, are more abundant elsewhere (Figure 5). These dif-

ferences could have important implications for soil functioning, given

the role of some of microbial taxa comprising the modules, on pro-

cesses such as the production of enzymes to decompose soil organic

matter (i.e., starch and cellulose degradation), the release C for main-

taining structural components, or the degradation of chitin, to name a

few (Trivedi, Delgado‐Baquerizo, Anderson, & Singh, 2016). Also, soil

pH (Figure 6) and soil P (Table S6.1) seem to play an important role

in explaining some of the taxa included in these modules. For exam-

ple, the relative abundance of modules 0 and 1, whose members

were significantly less abundant in Australian soils (Figure 5b) was

positively correlated with soil pH and included members of genera

Afifella, Balneimonas, DA101, Lamia, Kaistobacter, and Microlunatus

(module 0), and Gemmata, Lentzea, Rubrobacter, Rhodoplanes, Mesorhi-

zobium, Opitutus, Nocardioides, and Steroidobacter (module 1), which

have been reported to be found in high pH soils across the globe

(Delgado‐Baquerizo et al., 2018), and that show relatively low abun-

dant in Australian soils. In contrast, clusters 3 and 4 contain members

of the family Bradyrhizobiaceae and genera Candidatus Solibacter,

Mycobacterium, Rhodoplanes, and Phenylobacterium (module 3), Methy-

lobacterium and Nocardioides (module 4), which have been reported

from low pH soils globally (Delgado‐Baquerizo et al., 2018), and that

could be relatively more abundant in Australian soils. Although taxa

related to soil P are more poorly described at the global scale, taxa

from family Pseudonocardiaceae (Delgado‐Baquerizo et al., 2018) and

order Burkholderiales (Baas et al., 2016) in module 3 might prefer the

low soil P conditions in Australia compared with elsewhere.

5 | CONCLUSIONS

Together, our study provides evidence that Australian dryland soils

are different from drylands elsewhere in terms of their main proper-

ties and microbial communities. The signature of Australian soils was

consistent with that of highly weathered landscapes (Vitousek et al.,
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2010; Wardle et al., 2014) low in pH, lower contents of total and

available P, and generally higher C:N and C:P ratios, a greater rela-

tive proportion of Proteobacteria and lower abundance of Acti-

nobacteria and, more importantly, higher relative abundance of

specific microbial assemblies linked to low soil pH. It is critically

important that we understand how Australian soils differ from those

of other drylands because it will shield us against unrealistic expec-

tations about the extent to which current land management prac-

tices such as conservation farming or low risk stocking might lead to

better environmental outcomes for them. Second, knowledge about

Australian soils will help to explain why, for example, Australian

ecosystems and their biota behave in idiosyncratic ways; adding to

the growing body of knowledge and attempts to evaluate whether

Australian dryland soils are indeed resource poor, or whether this

notion is an artificial construct arising from a Eurocentric view of

ecosystem productivity. This knowledge will ultimately provide us

with a greater understanding of the mechanisms underpinning the

processes shaping the Australian environment and its biota.
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